Homework Solutions
 Chapter 11 - Page 713

Exercise 29

(a) Let μ_{1} be the average number of hours on course work by C students and let μ_{2} be the average number of hours on course work by D students. The hypotheses are

$$
\begin{array}{cl}
H_{0}: & \mu_{1}=\mu_{2} \\
H_{1}: & \mu_{1}>\mu_{2}
\end{array}
$$

(b) We will do the remaining steps, steps 2 through 7.
2. $\alpha=0.10$.
3. $t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$.
4. First, compute s_{p}. Enter the data into two separate lists in the TI-83 and use 1 -Var-Stats for each list. We obtain $\bar{x}_{1}=4.6, s_{1}=3.406, \bar{x}_{2}=2.25$, and $s_{2}=1.282$. Then calculate s_{p}.

$$
\begin{aligned}
s_{p} & =\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \\
& =\sqrt{\frac{9 \cdot 3.406^{2}+7 \cdot 1.282^{2}}{16}} \\
& =2.692 .
\end{aligned}
$$

Compute t.

$$
\begin{aligned}
t & =\frac{4.6-2.25}{2.692 \sqrt{\frac{1}{10}+\frac{1}{8}}} \\
& =\frac{2.35}{1.277} \\
& =1.840
\end{aligned}
$$

5. p-value $=\operatorname{tcdf}(1.840, \mathrm{E} 99,16)=0.0422$.
6. Reject H_{0}.
7. C students spend more time on course work outside of class than do D students.

You could use 2-SampTTest to compute the values in Steps 4 and 5.

